

【公开版】AR 眼镜关键零组件及趋势分析

化合物半导体产业智库

行业研究 | 产业数据 | 调研报告 | 品牌策划

LED新型显示 / 第三代半导体 / 新型储能 / 机器人

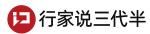
AI眼镜商业化加速

2025年,华为、阿里、百度、雷鸟等科技巨头竞相入局,AI眼镜成为了2025年的热门战场,其中包括了高性价比的AI+音频眼镜,以及以显示为核心的AR眼镜。而 Micro LED AR眼镜最能满足大众对于AI眼镜设想的产品。

□ 语音AI

☑ 语音AI+拍摄

行家说Research,2025


- 以语音的形式连接智能AI, 更精简的功能带 来了更轻的重量,更高的性价比
- 产品包括华为智能眼镜 2 系列, 米家音频眼 镜系列,为初级产品

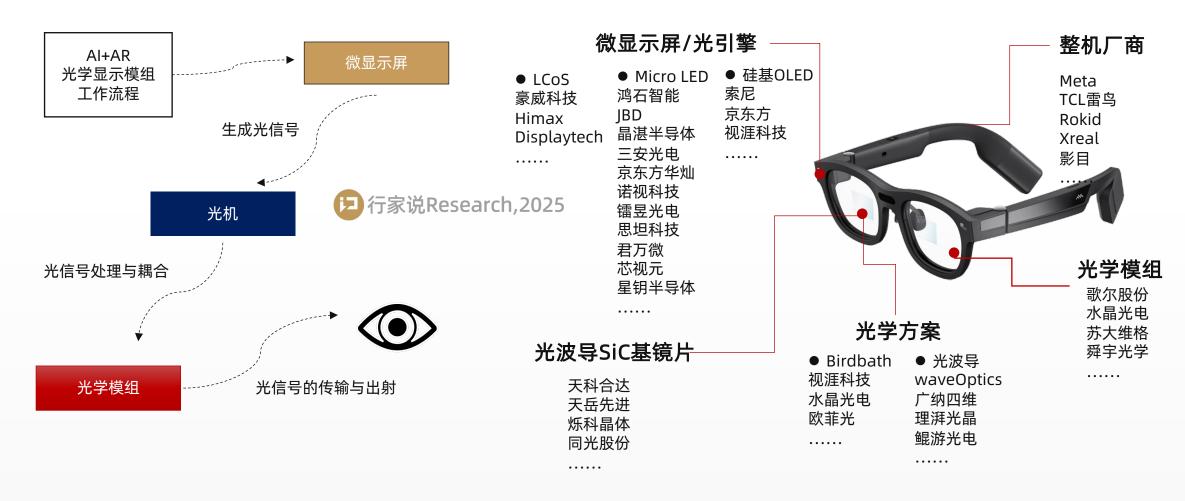
- 从语音及拍摄的方式达成AI智能化,价格在 2000附近
- 产品包括Meta Ray-Ban Classic、小米AI眼 镜, 均具备高销售量

☑ AR显示眼镜

- 以显示为核心的眼镜,即是AR眼镜,是最能 满足大众对于AI眼镜设想的产品
- 产品包括雷鸟X3 Pro、Meta Orion,基本 应用Micro LED, 价格在2000-5000的范围

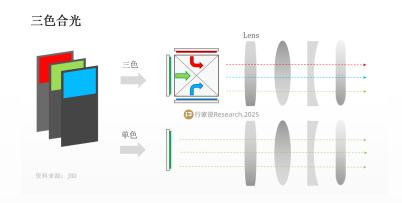
碳化硅光波导AR眼镜案例

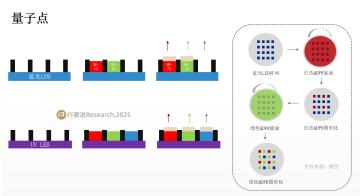
慕德微纳



2022-2025年亮相的Micro LED AR眼镜 (不完全统计)

型号	光学	色彩	首发价(¥)	重量(g)
影目INMO Go	光波导	单绿	1799	52
雷鸟X2	光波导	全彩	4999	119
李未可Meta Lens S3	光波导	单色	1999	93
魅族MYVU Discovery	光波导	全彩	9999	71
魅族MYVU	光波导	纯色	2499	43
Vuzix Shield®	光波导	单绿	约18174	/
VUZIX Z100	光波导	单绿	约3612	38
oppo Air Glass	光波导	单绿	4999	约30
tooz ESSNZ BERLIN	光波导	单绿	1	40
Even Realities G1	光波导	单绿	4352	/
Blucap Moto	光波导	单绿	约2847	1
雷鸟X2 Lite	光波导	全彩	/	60
OPPO Air Glass 3	光波导	全彩	1	50

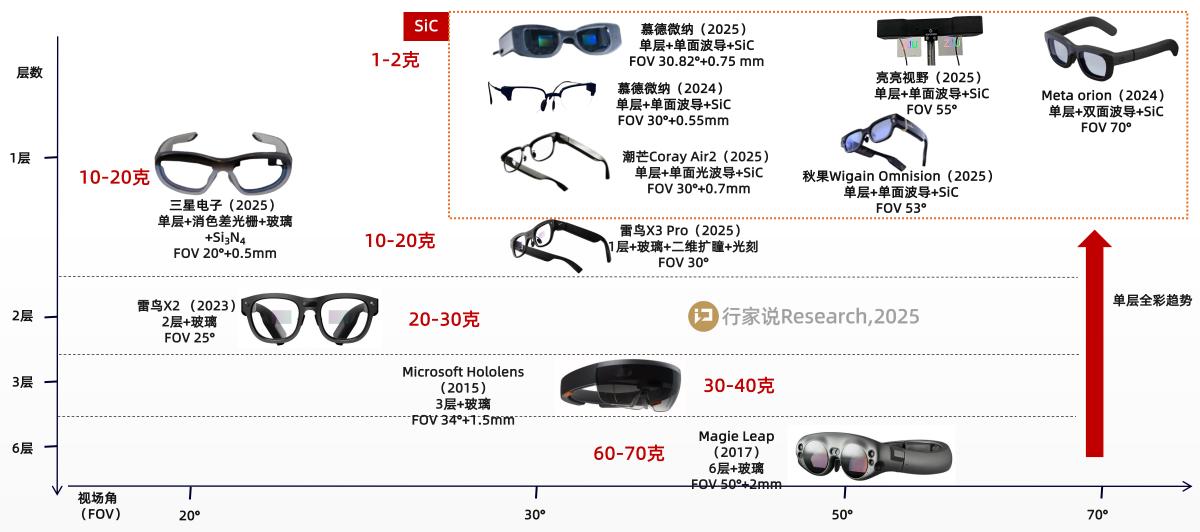

型号 	光学	色彩	首发价(¥)	重量(g)
魅族 StarV Air2	光波导	单绿	2799	44
逸文科技G1	光波导	单绿	约4358	/
Meta Orion	光波导	全彩	/	98
东南大学 云雀	光波导	/	/	45
Rokid Glasses	光波导	单绿	2499	49
影目INMO Go2	光波导	单绿	3299	/
微光科技玄景M5夹片眼镜	光波导	1	/	25.8
传音控股AI Glasses Pro	光波导	单绿	/	40-50
雷鸟X3 Pro	光波导	全彩	7649/9349	76
利亚德AR(AI)眼镜	光波导	全彩	/	45
亮亮视野 Leion Hey2	光波导	单绿	/	49
朝芒Coray Air2	SiC波导	全彩	4999	49
阿里 夸克AI眼镜	光波导	单绿	/	/


AI+AR光学显示产业链图谱

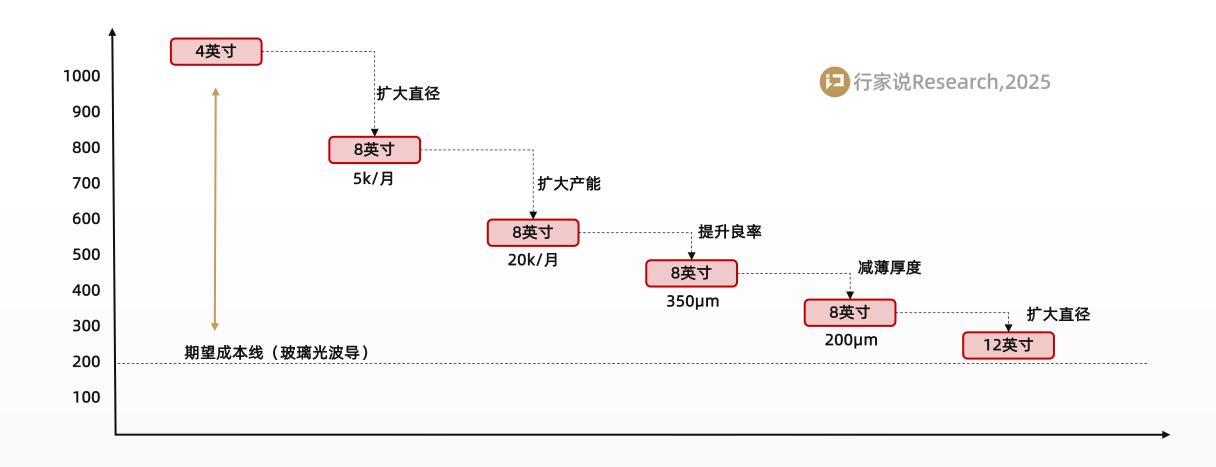
Micro LED的全彩化

行家说Research,2025

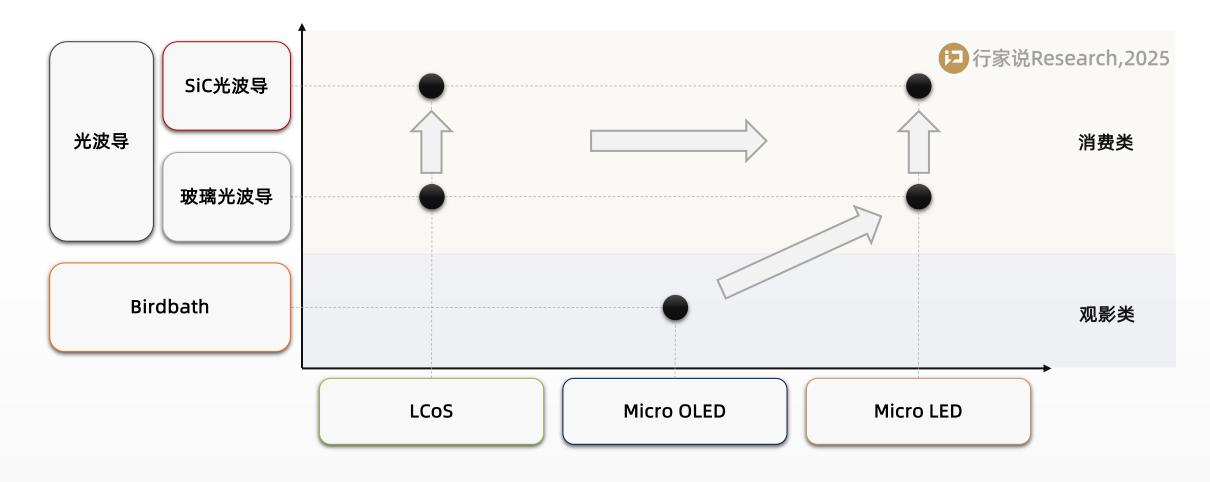
AR眼镜与普通眼镜的对比

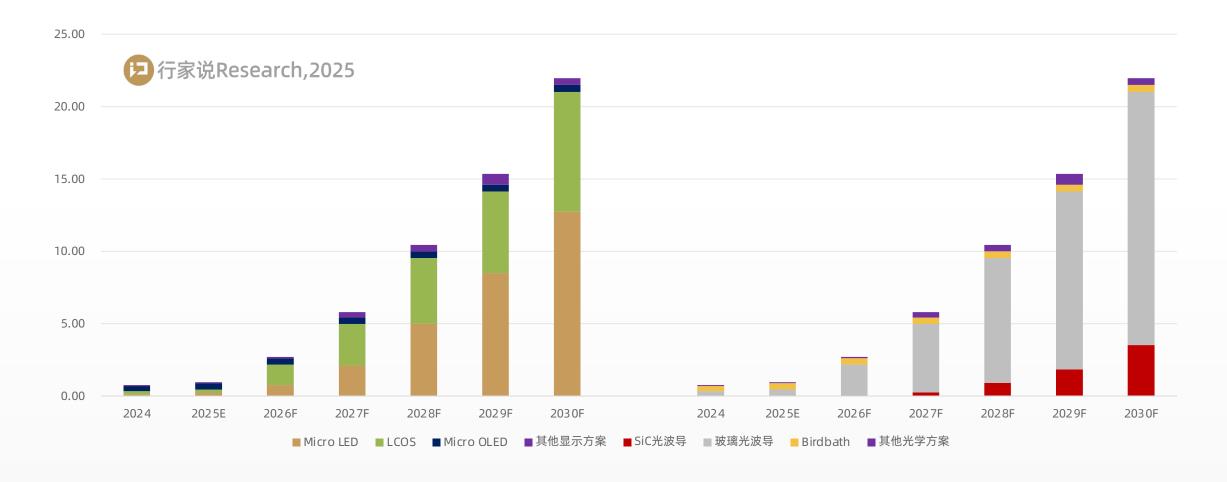


来源: JBD


如果要使AR眼镜和普通眼镜大小无异, 模组要足够小

行家说Research,2025


全彩光波导的层数


AR眼镜SiC波导镜片降本路径分析

AR眼镜显示与光学技术路线升级路径



不同方案的AR眼镜出货量

AR用Micro LED外延片出货量(单位:万片)

AR用Micro LED外延片出货量(单位:万片)

SiC衬底在AR眼镜上的用量(单位:万片,折合8寸片)

SiC衬底在AR眼镜上的用量(单位:万片)

2025 AI+AR眼镜光学显示调研白皮书

产业重点名词解释 第一章 AI 眼镜定义与演变趋势

- 1.1 AI 眼镜的分类、交互方式及演变趋势
- 1.2 AI 眼镜的重要发展历程
- 1.3 AI 眼镜的产业链结构及应用方向

第二章 AR 眼镜光学显示关键技术与产品进展

- 2.1 AR 眼镜光波导结构及衬底材料进展
- 2.2 AR 眼镜显示模组技术分类与进展

第三章 光波导与 SiC 技术及应用进展

- 3.1 传统光波导与 SiC 光波导
- 3.2 SiC 光波导的技术与应用进展
- 3.3 SiC 光波导大尺寸衬底进展及降本分析
- 3.4 光学级 SiC 衬底关键工艺及相关核心设备要求
- 3.5 SiC 光波导光栅刻蚀工艺及相关核心设备要求

第四章 光机与 Micro LED 技术及应用进展

4.1 光机与光波导的联动

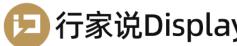
- 4.2 Micro LED VS Micro OLED 光机的差异与进展
- 4.3 Micro LED 光机解决方案的优势与挑战
- 4.4 Micro LED 光机驱动IC进展
- 4.4 Micro LED 光机配套材料与设备进展

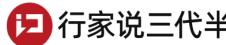
第五章 AI+AR眼镜市场规模及前景分析

- 5.1 2025-2030年 AI+AR眼镜产业市场规模分析
- 5.2 2025-2030年 SiC 光波导镜片出货量分析
- 5.3 2025-2030年 AR 用 Micro LED 外延片出货量分析
- 5.4 SiC 光波导+Micro LED AR眼镜前景分析

第六章 AI (含AR) 眼镜产业链图谱与重点厂商进展

- 6.1 AI (含AR) 眼镜产业链图谱
- 6.2 AI (含AR) 眼镜重点品牌厂商进展
- 6.3 光学级 SiC 衬底重点厂商进展
- 6.4 SiC 光波导配套材料及设备重点厂商进展
- 6.5 Micro LED 微显示解决方案重点厂商进展
- 6.6 Micro LED 微显示配套材料与设备重点厂商进展





欢迎订阅

让产业信息创造价值

光电与新能源产业智库

行业研究 | 产业数据 | 调研报告 | 品牌策划

